INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: IDENTIFIERS AND PROCESSES

OCCAM 2 s case sensitive. Identifiers may be of any length,
and may be composed of letters, digits and dots (periods).
Examples of valid identifiers:

PACKET LinkoOut NOT.A.NUMBER
vectoré port.in transputer
fred Fred FRED disCourageD

All keywords are in upper case and are reserved. Their list:

AFTER FOR PAR ROUND
ALT FROM PLACE SEQ
AND FUNCTION PLACED SIZE
ANY IF PLUS SKIP
AT IS PORT OF STOP
BITAND INT PRI TIMER
BITNOT INT16 PROC TIMES
BITOR INT32 PROCESSOR

BOOL INT64 PROTOCOL TRUE
BYTE MINUS REAL32 TRUNC
CASE MOSTNEG REALG64 VAL
CHAN OF MOSTPOS REM VALOF
ELSE NOT RESULT WHILE
FALSE OR RETYPES

OCCAM 2 programs are built from processes. There are only
five types of primitive processes. Larger processes are built by
combining smaller processes into a construction. There are only
six kinds of constructions:

PRIMITIVE CONSTRUCTIONS

Assignment SEQ WHILE
Input SKIP IF PAR
Output STOP CASE ALT

OCCAM PROGRAMMING v.1 -4 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: PRIMITIVE PROCESSES

Assignment:
X :=y + 2
a, b, c:=x,y +1, z + 2
X, V¥ =Yy, X -— Swap
Input:
keyboard ? char
Output:
screen ! char
SKIP Process (performs no action and terminates):
SEQ
keyboard ? char
SKIP
screen ! char
STOP Process (performs no action
and never terminates):
SEQ
keyboard ? char
STOP

screen ! char

OCCAM PROGRAMMING v.1 -5- © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: SEQ
Used to combine processes to be executed sequentially:

SEQ
screen ! “?7°
keyboard ? char
screen ! char
screen ! cr
screen ! 1f

is equivalent to:

SEQ

SEQ
screen ! ‘7’
keyboard ? char

SEQ
screen ! char
screen ! cr
screen ! 1f

Replicated SEQ

SEQ i = 14 FOR 2
stream ! data.array[i]

is equivalent to:

SEQ
stream ! data.array[14]
stream ! data.array([15]

Replication index, base and count must be of type INT. The
index may be used in expressions, but cannot be assigned to.

If count value is 0, the construction is equivalent to SKIP.
A negative count value makes the construction invalid.

OCCAM PROGRAMMING v.1 -6- © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: IF

Some IFs may act as STOP:
IF -- this IF may STOP

X <Yy
X =X + 1

but not this one:

IF —— this IF will never STOP
X <Yy
X := X + 1
X >y
X =X -1
TRUE
SKIP

An IF construct may be replicated; its guarding Boolean
expressions may be IFs too:

IF
IF i = 1 FOR length
string[i] <> object[i]
found := FALSE
TRUE
found := TRUE

Replication index, base and count must be of the type INT.
If count value is 0, the replicated IF construction is equivalent
to STOP. A negative count value makes the construction invalid.

OCCAM PROGRAMMING v.1 -7- © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: CASE

Consider some straightforward examples:

CASE direction
up
X := X + 1
down
X

]
b
|
[

Above, the value of the expression direction is being
compared against the values of two expressions: up and down.

Some CASE constructions may act as STOP, like this one:
CASE letter
‘al, Jel, ;ia, aoa’ Iu'
vowel := TRUE

but not this one:

CASE letter

‘a’, ‘e’, ‘i*, ‘o’, ‘u’
vowel := TRUE

ELSE
vowel := FALSE

NOTE: All case expressions used in a selection must have
distinct constant values. The selector and the case expressions
must be of the same data type, which may be either integer or
byte data type. A selection can have only one ELSE option.

OCCAM PROGRAMMING v.1 -8 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: WHILE

All loops in OCCAM 2 are coded using the WHILE construction.
Consider:

WHILE buffer <> eof
SEQ
in 7 buffer
out ! buffer

Searching the array string for a particular character char:

SEQ
pointer =0
finished := FALSE
found := FALSE
WHILE NOT finished
IF
string[pointer] <> char
IF
pointer < end.of.string
pointer := pointer + 1

pointer = end.of.string
finished := TRUE
string[pointer] = char

SEQ
found = TRUE
finished := TRUE
can be done simpler:
IF
IF i = 0 FOR string.size
string[i] = char
found := TRUE
TRUE
found := FALSE

OCCAM PROGRAMMING v.1 -9 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: PAR

PARallel construct combines processes to be run concurrently.
Example: Editing a file may be seen as running three processes:

PAR
editor (keyboard, screen)
input (keyboard) -- device driver
output (screen) —— device driver

Example: Concurrent buffering:

WHILE next <> eof
SEQ
buffer := next
PAR
in ? next
out ! buffer

PAR constructs can be replicated in the usual manner.
For example, we can create a farm of workers, viz.:

PAR
boss ()
PAR instance = 0 FOR 4
worker (instance)

PAR instance = 0 FOR 4

boss worker worker worker worker

- (0) (1) (2) (3)

OCCAM PROGRAMMING v.1 -10 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: PLACED PAR

PLACED PARallel construct is used to distribute programs
across a number of processors. Its general format is:

PLACED PAR
PROCESSOR 1 <type>
Pl —- place some code here
PROCESSOR 2 <type>,
P2 —- place some other code here

PROCESSOR k <type>,
Pk —— place some (different) code here

Example of use: Suppose we have a program:

CHAN OF INT Pipe:
PAR
WHILE TRUE
SEQ
—- some actions including
Pipe ! x —— for some data value x
WHILE TRUE
SEQ
Pipe 7 ¥y
—-— some other actions

OCCAM PROGRAMMING v.1 - 11 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: PLACED PAR
(continued)

Suppose further, that we have two transputers of types T800
and T425 plugged into sockets 3 and 7 on the motherboard.
We want to connect them as follows:

? ?
3 3
o2 0 o—012 0fo
1 1
) )
Transputer 3 (T800) Transputer 7 (T425)

The code accomplishing this should look as follows:

CHAN OF INT Pipe:
PLACED PAR
PROCESSOR 3 T800
PLACE Pipe AT LinkoutoO:

WHILE TRUE
SEQ
--some actions including
Pipe ! x —- for some data value x

PROCESSOR 7 T425
PLACE Pipe AT Linkin2:
WHILE TRUE
SEQ
Pipe 7 y
—— some other actions

OCCAM PROGRAMMING v.1 -12 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: PLACED PAR

(continued)

In this example we create a pipeline of processes:

VAL INT NProcessors IS 15:

[NProcessors+1]CHAN OF INT Pipe:

PAR 1 = 0 FOR NProcessors
process(Pipe[i], Pipe[i+l]

If this is to be mapped onto a series of connected transputers

of type T800 (numbered 0, 1, ... , 14)

2

=0 e¢oe¢ O—

N
0O wio
o
[

N
o~ wio
o
[\
o= wjo
o

3
2140
1

The code should be modified to read as follows:

VAL INT NProcessors IS 15:
[NProcessors+1]JCHAN OF INT Pipe:
PLACED PAR i = 0 FOR NProcessors

PROCESSOR i T800

PLACE Pipe[i] AT Linkin2:
PLACE Pipe[i+1] AT LinkoutoO:
process(Pipe[i], Pipe[i+1]

OCCAM PROGRAMMING v.1 -13 -

© V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: PRI PAR

The component processes of a PARallel construct executing on
a single processor may be assigned a priority of execution:

PRI PAR
terminal (keyboard, screen)
editor (keyboard, screen)

Here the process terminal will always be executed in
preference to the process editor. In general, each process
belonging to a PRI PAR construct executes at a separate
priority, the first process having the higherst priority, the last
process the lowest. Lower priority processes may only execute
when all higher priority processes are unable to.

Replication is also possible:

PRI PAR i = 0 FOR 8
user (keyboard[i], screen[i])

The process with the highest index is executed at the lowest
priority.

OCCAM PROGRAMMING v.1 -14 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: ALT

An alternation combines a number of processes guarded by
inputs:

ALT
left ? packet
stream ! packet
right ? packet
stream ! packet

An alternation may wait selectively; it may also perform some
default actions:

ALT
enabled & left ? packet
stream ! packet
right ? packet
stream ! packet
sunday & SKIP
stream ! null.packet

OCCAM PROGRAMMING v.1 -15 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: ALT
(continued)

Remember the farm of workers?

PAR instance = 0 FOR 4

boss

worker worker worker worker

0) | (1) (2) (3)

Suppose we want to assign the boss a secretary, with the job of
regulating the flow of work into the farm:

to.farm to.workers
secy farm
from.farm from.workers

boss

The code for the secretary would be:

SEQ
idlers := number.of.workers
WHILE running
ALT
from.workers ? result
SEQ
from.farm ! result
idlers := idlers + 1
(idlers >= 1) & to.farm ? packet
to.workers ! packet
idlers := idlers - 1

OCCAM PROGRAMMING v.1 - 16 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: ALT
(continued)

The ALT construction can be replicated in the same way as
sequences, conditionals and parallels. A replicated alternation
constructs a number of similar alternatives.

Suppose that in our farm example, workers are farms
themselves. It might then be practical to assign a secretary to
each worker. The secretary’s code might look like:

ALT
ALT i = 0 FOR number.of.workers
free.worker[i] & to.farm ? packet
SEQ
to.worker[i] ! packet
free.worker[i] := FALSE
ALT
from.worker[i] ? result
SEQ
from.farm ! result
free.worker[i] := TRUE

OCCAM PROGRAMMING v.1 -17 - © V. Wojcik, 1993



INTRODUCTION TO PARALLEL COMPUTING

OCCAM 2: PRI ALT

The inputs guarding alternatives in an ALTernation construct
may be assigned a selection priority. Consider:

PRI ALT
disk ? block
disk.driver (block)
keyboard ? char
keyboard.driver (char)

This construct will input data from the channel disk in
preference to the data from the channel keyboard, whenever
both channels are ready.

Another example:

PRI ALT
stream ? data
P()
busy & SKIP

Q()

This construct inputs data whenever the channel stream is
ready and then executes process p(), otherwise, if Boolean
busy IS true then the process () is executed.

The replication rules for the PRI ALT construct are identical to
those of the ALT construct.

OCCAM PROGRAMMING v.1 - 18 - © V. Wojcik, 1993



